
GL120
Linux
Fundamentals

Version: GL120-R6S11U1004-H02



T
a
b

le
 o

f 
C

o
n

te
n

ts
Chapter Numbers & Titles

1 WHAT IS LINUX?
2 LOGIN AND EXPLORATION
3 THE LINUX FILESYSTEM
4 MANIPULATING FILES
5 SHELL BASICS
6 ARCHIVING AND COMPRESSION
7 TEXT PROCESSING
8 REGULAR EXPRESSIONS
9 TEXT EDITING
10 COMMAND SHELLS
11 INTRODUCTION TO SHELL SCRIPTING
12 PROCESSMANAGEMENTANDJOBCONTROL
13 MANAGING SOFTWARE



T
a
b

le
 o

f 
C

o
n

te
n

ts
14 MESSAGING
15 PRINTING
16 THE SECURE SHELL (SSH)
17 MOUNTING FILESYSTEMS & MANAGING
REMOVABLE MEDIA

18 PRE-INSTALLATION CONSIDERATIONS
19 INSTALLING RHEL6
20 INSTALLING SLES11



C
o

u
rs

e
 L

o
g

is
ti

c
s

Schedule:
y Class start and end times
y Lunch and other breaks

Training Facility Information:
y Restrooms
y Telephone and network access
y Break rooms and other resources
y Emergency procedures



In
tr

o
d

u
c
ti

o
n

s Participant Introductions:
y Name and employer
y Background and relevant experience
yObjectives and topics of interest



B
o

o
k
 D

e
s
ig

n Typographic Conventions:

The number
"zero".

The letter
"oh".

The number
"one".

The letter
"ell".

Keys pressed at the same time.

Keys pressed in sequence.



B
o

o
k
 D

e
s
ig

n Line Wrapping:

password required /lib/security/pam_cracklib.so retry=3a
 type= minlen=12 dcredit=2 ucredit=2 lcredit=0 ocredit=2

password required /lib/security/pam_unix.so use_authtok

File: /etc/ssh/sshd_config
 #LoginGraceTime 2m
- #PermitRootLogin yes
+ PermitRootLogin no
+ AllowUsers sjansen
 #StrictModes yes

Representing File Edits:

password required /lib/security/pam_cracklib.so retry=3a
 type= minlen=12 dcredit=2 ucredit=2 lcredit=0 ocredit=2

password required /lib/security/pam_unix.so use_authtok

File: /etc/ssh/sshd_config
 #LoginGraceTime 2m
- #PermitRootLogin yes
+ PermitRootLogin no
+ AllowUsers sjansen
 #StrictModes yes



B
o

o
k
 D

e
s
ig

n Command Prompts:

v

Lab Conventions

Lab Task Headers

Every lab task begins with three standard informational headers:
"Objectives", "Requirements" and "Relevance". Some tasks also include
a "Notices" section. Each section has a distinct purpose.

Objectives ⇒ An outline of what will be accomplished in the lab task.
Requirements ⇒ A list of requirements for the task. For example,

whether it must be performed in the graphical environment, or
whether multiple computers are needed for the lab task.

Relevance ⇒ A brief example of how concepts presented in the lab
task might be applied in the real world.

Notices ⇒ Special information or warnings needed to successfully
complete the lab task. For example, unusual prerequisites or common
sources of difficulty.

Command Prompts

In order to save space, the command prompts shown in examples have
been condensed to either "$" or "#". Commands with a $ prompt should
be run as a normal user like guru or visitor. Commands with a # prompt
should be run as the root user. For example:

$ whoami
guru
$ su -
Password: password
# whoami
root

Occasionally the prompt will contain additional information. For example,
when portions of a lab task should be performed on two different stations,
the prompt will be expanded to:

stationX$ whoami
guru
stationX$ ssh root@stationY
root@stationY’s password: password
stationY# whoami
root

Variable Data Substitutions

In some lab tasks, students are required to replace portions of commands
with variable data. Variable substitution are represented using italic fonts.
For example, X and Y.

Substitutions are used most often in lab tasks requiring more than one
computer. For example, if a student on station4 were working with a
student on station2, the lab task would refer to stationX and stationY

stationX$ ssh root@stationY

and each would be responsible for interpreting the X and Y as 4 and 2.

station4$ ssh root@station2

Truncated Command Examples

Command output is occasionally omitted or truncated in examples. There
are two type of omissions: complete or partial.

Sometimes the existence of a command’s output, and not its content, is
all that matters. Other times, a command’s output is too variable to
reliably represent. In both cases, when a command should produce
output, but an example of that output is not provided, the following
format is used:

$ cat /etc/passwd
. . . output omitted . . .

In general, at least a partial output example is included after commands.
When example output has been trimmed to include only certain lines,
the following format is used:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
. . . snip . . .
clints:x:500:500:Clint Savage:/home/clints:/bin/zsh
. . . snip . . .

Distribution Specific Information:

vi

Lab Conventions

Distribution Specific Information

This courseware is designed to support multiple Linux distributions.
When there are minor differences between the enterprise and enthusiast
distributions, the enterprise distributions are preferred for examples,
screenshots, etc. When the differences are more significant, each version
is labeled appropriately. The following base strings are used to represent
the distributions supported by this courseware:

RHEL ⇒ Red Hat Enterprise Linux
FC ⇒ Fedora Core
SLES ⇒ SUSE Linux Enterprise Server
SL ⇒ SUSE Linux

The specific supported version is appended to the base distribution
strings, so for Red Hat Enterprise Linux version 5 the complete string
is: RHEL5.

Certain lab tasks are designed to be completed on only a sub-set of the
supported Linux distributions. If the distribution that you are using is not
shown in the list of supported distributions for the lab task, then you
should simply skip that task.

Certain lab steps are only to be performed on a sub-set of the supported
Linux distributions. In this case, the step will start with a standardized
string that indicates which distributions the step should be performed on.
When completing lab tasks, skip any steps that do not list your chosen
distribution. For example:

This step should only be performed on FC3 and RHEL4.1)
Because of a bug in RHEL4's and FC3's Japanese fonts...

Sometimes commands or command output is distribution specific. In
these cases, the matching distribution string will be shown to the left of
the command or output. For example:

$ grep -i linux /etc/*-release | cut -d: -f2
Red Hat Enterprise Linux ES release 4 (Nahant)[RHEL4]

SUSE LINUX Enterprise Server 9 (i586)[SLES9]

Action Lists

Some lab steps consist of a list of conceptually related actions. A
description of each action and its effect is shown to the right or under
the action. Alternating actions are shaded to aid readability. For example,
the following action list describes one possible way to launch and use
xkill to kill a graphical application:

Ô¿Å Open the "run" dialog.

xkillÕ Launch xkill. The cursor should change,
usually to a skull and crossbones.

Click on a window of the application to kill.
Indicate which process to kill by clicking on
it. All of the application’s windows should
disappear.

Callouts

Occasionally lab steps will feature a shaded line that extends to a note
in the right margin. This note, referred to as a "callout", is used to provide
additional commentary. This commentary is never necessary to complete
the lab succesfully, and could in theory be ignored. However, callouts
do provide valuable information such as: insight into why a particular
command or option is being used, the meaning of less obvious command
output, and tips or tricks such as alternate ways of accomplishing the task
at hand.

On SUSE, the sux command
copies the MIT-MAGIC-COOKIE-1
so that graphical applications
can be run after switching
to another user account. The
normal su command does
not do this.

$ sux -[SLES9]

Password: password
# xclock



B
o

o
k
 D

e
s
ig

n Action Lists:

vi

Lab Conventions

Distribution Specific Information

This courseware is designed to support multiple Linux distributions.
When there are minor differences between the enterprise and enthusiast
distributions, the enterprise distributions are preferred for examples,
screenshots, etc. When the differences are more significant, each version
is labeled appropriately. The following base strings are used to represent
the distributions supported by this courseware:

RHEL ⇒ Red Hat Enterprise Linux
FC ⇒ Fedora Core
SLES ⇒ SUSE Linux Enterprise Server
SL ⇒ SUSE Linux

The specific supported version is appended to the base distribution
strings, so for Red Hat Enterprise Linux version 5 the complete string
is: RHEL5.

Certain lab tasks are designed to be completed on only a sub-set of the
supported Linux distributions. If the distribution that you are using is not
shown in the list of supported distributions for the lab task, then you
should simply skip that task.

Certain lab steps are only to be performed on a sub-set of the supported
Linux distributions. In this case, the step will start with a standardized
string that indicates which distributions the step should be performed on.
When completing lab tasks, skip any steps that do not list your chosen
distribution. For example:

This step should only be performed on FC3 and RHEL4.1)
Because of a bug in RHEL4's and FC3's Japanese fonts...

Sometimes commands or command output is distribution specific. In
these cases, the matching distribution string will be shown to the left of
the command or output. For example:

$ grep -i linux /etc/*-release | cut -d: -f2
Red Hat Enterprise Linux ES release 4 (Nahant)[RHEL4]

SUSE LINUX Enterprise Server 9 (i586)[SLES9]

Action Lists

Some lab steps consist of a list of conceptually related actions. A
description of each action and its effect is shown to the right or under
the action. Alternating actions are shaded to aid readability. For example,
the following action list describes one possible way to launch and use
xkill to kill a graphical application:

Ô¿Å Open the "run" dialog.

xkillÕ Launch xkill. The cursor should change,
usually to a skull and crossbones.

Click on a window of the application to kill.
Indicate which process to kill by clicking on
it. All of the application’s windows should
disappear.

Callouts

Occasionally lab steps will feature a shaded line that extends to a note
in the right margin. This note, referred to as a "callout", is used to provide
additional commentary. This commentary is never necessary to complete
the lab succesfully, and could in theory be ignored. However, callouts
do provide valuable information such as: insight into why a particular
command or option is being used, the meaning of less obvious command
output, and tips or tricks such as alternate ways of accomplishing the task
at hand.

On SUSE, the sux command
copies the MIT-MAGIC-COOKIE-1
so that graphical applications
can be run after switching
to another user account. The
normal su command does
not do this.

$ sux -[SLES9]

Password: password
# xclock



B
o

o
k
 D

e
s
ig

n Callouts:

vi

Lab Conventions

Distribution Specific Information

This courseware is designed to support multiple Linux distributions.
When there are minor differences between the enterprise and enthusiast
distributions, the enterprise distributions are preferred for examples,
screenshots, etc. When the differences are more significant, each version
is labeled appropriately. The following base strings are used to represent
the distributions supported by this courseware:

RHEL ⇒ Red Hat Enterprise Linux
FC ⇒ Fedora Core
SLES ⇒ SUSE Linux Enterprise Server
SL ⇒ SUSE Linux

The specific supported version is appended to the base distribution
strings, so for Red Hat Enterprise Linux version 5 the complete string
is: RHEL5.

Certain lab tasks are designed to be completed on only a sub-set of the
supported Linux distributions. If the distribution that you are using is not
shown in the list of supported distributions for the lab task, then you
should simply skip that task.

Certain lab steps are only to be performed on a sub-set of the supported
Linux distributions. In this case, the step will start with a standardized
string that indicates which distributions the step should be performed on.
When completing lab tasks, skip any steps that do not list your chosen
distribution. For example:

This step should only be performed on FC3 and RHEL4.1)
Because of a bug in RHEL4's and FC3's Japanese fonts...

Sometimes commands or command output is distribution specific. In
these cases, the matching distribution string will be shown to the left of
the command or output. For example:

$ grep -i linux /etc/*-release | cut -d: -f2
Red Hat Enterprise Linux ES release 4 (Nahant)[RHEL4]

SUSE LINUX Enterprise Server 9 (i586)[SLES9]

Action Lists

Some lab steps consist of a list of conceptually related actions. A
description of each action and its effect is shown to the right or under
the action. Alternating actions are shaded to aid readability. For example,
the following action list describes one possible way to launch and use
xkill to kill a graphical application:

Ô¿Å Open the "run" dialog.

xkillÕ Launch xkill. The cursor should change,
usually to a skull and crossbones.

Click on a window of the application to kill.
Indicate which process to kill by clicking on
it. All of the application’s windows should
disappear.

Callouts

Occasionally lab steps will feature a shaded line that extends to a note
in the right margin. This note, referred to as a "callout", is used to provide
additional commentary. This commentary is never necessary to complete
the lab succesfully, and could in theory be ignored. However, callouts
do provide valuable information such as: insight into why a particular
command or option is being used, the meaning of less obvious command
output, and tips or tricks such as alternate ways of accomplishing the task
at hand.

On SUSE, the sux command
copies the MIT-MAGIC-COOKIE-1
so that graphical applications
can be run after switching
to another user account. The
normal su command does
not do this.

$ sux -[SLES9]

Password: password
# xclock



Chapter

1
WHAT IS LINUX?



Unix Origins and Design Principles

Inherits features from Multics such as the hierarchical filesystem
Everything is a file
Small single-purpose programs
Ability to pipe small programs together to accomplish more complex
tasks

The kernel makes minimum policy decisions, leaving things up to
easily modifiable userland programs

All configuration data stored as text, (e.g. ASCII, UTF-8)



Unix Timeline

1965 – GE, MIT, and AT&T begin work on MULTICS
1969 – MULTICS dropped by AT&T, and replace it with UNICS
1973 – Unix rewritten in C, making it portable
1975 – Sixth Edition released; source licensed at low cost
1979 – Seventh Edition released, foundation of future Unix systems
1985 – Eighth Edition, based on 4.1BSD
1988 – 4.3BSD Net/1: first free software release
1989 – Tenth Edition, never released publicly; Plan9 First Edition
replaces it in 1992 (open sourced in 2002)

1990 – AT&T Unix System V Release 4.
1991 – Minix 1.5 released.
1992 – Linus Torvalds releases 0.12 Linux under the GPL.



FSF and GNU

Richard Stallman – founder of GNU and the FSF
1983 – GNU (GNU's not Unix)
• goal: create the free GNU Operating System
• first programs: emacs and gcc

1985 – Free Software Foundation
• nonprofit organization for promotion of free software
• manages the GNU project

By 1991 the GNU system was almost complete
• only crucial component missing was a kernel



GPL – General Public License

Guarantees that free software remains free
All software under the GPL makes source available to the end user
Changes to a GPL licensed software package must also be licensed
under the GPL

Source code from GPL licensed software can be incorporated into
other GPL licensed software

Other Licenses:
• http://www.gnu.org/licenses/license-list.html
• http://www.opensource.org/licenses/index.html



The Linux Kernel

Linus Torvalds – Finnish college student
• wanted to replace Minix, a UNIX-like feature-limited teaching OS

The Linux kernel
• fresh re-implementation of the UNIX APIs
• under the GPL license

The Linux kernel together with GNU and other programs forms a
complete free operating system



Linux Timeline

1991 – Linus Torvalds releases 0.1 Linux
1993 – AT&T sells UNIX to Novell
1994 – Linux kernel 1.0 released
1995 – Novell licenses UNIX to SCO
1999 – Linux kernel 2.2 released
2000 – SCO sells UNIX code to Caldera, at the time a Linux company
2001 – Linux kernel 2.4 released
2002 – Caldera makes original Unix and BSD sources available
2003 – Linux kernel 2.6 released (17 December)
2003 – Novell acquires Ximian and SuSE
2011 – Attachmate acquires Novell, including SUSE.
2011 – 3.0 kernel released (21 July).



Components of a Distribution

Typical Linux distributions provide
• collection of applications along with the Linux kernel
• installation program
• documentation
• support
• some are very specialized (e.g. Linux Router Project)
• POSIX and Single Unix Specification compliance

Most Linux distributions provide the same basic software:
• GNU software

GNU Coding Standards
• BSD and Linux utilities
• X.Org, GNOME, KDE, and other GUI components



Slackware

Oldest active distribution
Fork of Softlanding Linux System (SLS)
Added simple package management
• Uses compressed tarballs

Added an automated installer
Became extremely popular and continues to have a wide following



SUSE Linux Products

SUSE Linux Enterprise Family
• Server and Desktop releases
• 2 year release cycle
• 7-10 year maintenance life cycle
• Highly scalable, mature technology
• Five platforms: x86, Amd64/Intel64, ia64, ppc64, S390x(zSeries)
• ISV certifications

The openSUSE Project
• Cutting edge
• 8 month release cycle
• Limited security updates for 1.5-2 years



Debian

Second oldest active distribution
Initially sponsored by the FSF
Authored and Controlled by the Debian community
Very committed to free software
Uses own package management, DPKG
Innovated with in-place, no reboot upgradability
Easy to keep your system current
• apt-get update
• apt-get upgrade



Ubuntu

Founded by Mark Shuttleworth
Licensed by Canonical
Based closely on Debian
Committed to free software
Uses Debian's package management, DPKG
Easy to keep your system current
• aptitude update
• aptitude upgrade



Red Hat Linux Products

Invented the RPM Package Manager
Easy-to-use installer integrates partitioning and leverages RPM
Loyal to free software ideals: only ships open-source software with
few exceptions

Fedora
• Cutting edge, community oriented project
• Provides new technology for future RHEL releases

Red Hat Enterprise Linux (RHEL)
• Enterprise targeted distribution with commercial support
• CentOS: community maintained, enterprise targeted, distribution
• Oracle Linux



Oracle Linux

Oracle Linux
• Matched release cycles with RHEL
• Binary and Source compatible with RHEL
• Highly scalable, mature technology
• Three platforms: x86, AMD64, and Itanium
• ISV certifications



Mandriva

Formerly Mandrake
Mandrake bought Connectiva, renamed Mandriva
"User-Friendly" distribution
Powerful installation program (able to resize NTFS and FAT partitions)
Mandriva Online update tool
Drax configuration tool
Uses RPM



Chapter

2
LOGIN AND
EXPLORATION



Logging In

Serial terminals — Text mode login via serial port
• mgetty+login — Handles modems
• agetty+login — Handles VT100/VT220 dumb terminals

Virtual terminals — Text mode login(s) on local console
• mingetty+login

Graphical — GUI login on local console
• xdm, gdm, kdm, etc.
• Terminal Emulator

xterm, rxvt, gnome-terminal, konsole
Network logins — Remote text mode login
• in.telnetd+login, in.rlogind, sshd, etc.



Running Programs

Graphical environment (e.g. X+GNOME)
Command line (e.g. Bash)



Interacting with Command Line

What happens when I pressÕ at the command prompt?
• expansion, substitution, and splitting performed
• redirection setup
• execution

Command options
Command arguments
Common errors
Tips and Tricks



The X Window System

GUI infrastructure for Unix and Linux systems
• Created in 1984
• Both a Protocol and an Implementation

Advantages of X
• Operating System Independent
• Modular and Extensible
• Client-server (Network Transparent!)

XFree86
• Original Open Source implementation of the X Window System

X.Org
• Forked XFree86 with a more open development model



Starting X

X already running with a graphical login
• On Red Hat Enterprise Linux and SUSE Linux Enterprise Server,
runlevel 5 by default

• On Ubuntu, runlevels 2-5 by default
From a text virtual terminal login, use startx
• startx is a shell script that eventually runs xinit
• can run xinit manually, but by default only starts the X server



Gathering Login Session Info

Who are you really?
• UID – user id
• GID – group id
• terminal: tty, pts, etc.

Commands for gathering information:
• id

id -un|whoami
id -Gn|groups

• tty



Gathering System Info

Who else is logged into the system?
• users
• who
• w
• finger

What type of system is this?
• uname -a
• free

What is the system's network name
• hostname
• ifconfig



got root?

Many operating systems have the concept of a super user
This super, or privileged, user has special access rights and privileges
on the system

The root user is the privileged user on most Unix systems
Has the user ID (UID) of zero (0)



Switching User Contexts

su: launch a new shell as another user (using the target user's
credentials)
• Use - | -l | --login to inherit login profile
• Default user is root

sudo: run a single command with another user's privilege
• Remembers authentication per-terminal (typically five minutes)
• Configuration affects authentication and available privilege
(/etc/sudoers)



sudo

sudo – a more powerful su
• more fine-grained security
• able to log commands

sudoedit – a safer way to edit files
• sudo -e

visudo – a safer way to manage sudo
• /etc/sudoers

Replacing su with sudo
• sudo -i

Using sudo with ssh
• ssh -t hostname "sudo reboot"



Help from Commands and Documentation

command --help
Documentation for installed packages
• RHEL6 /usr/share/doc/package_name-version
• SLES11 /usr/share/doc/packages/package_name
• U10.04 /usr/share/doc/package_name

Shipped or online distribution documentation
Linux Documentation Project - TLDP
Online help:
• web sites, FAQs, Howtos, newsgroups, mailing lists

Linux User Group(s) (LUGs)
• membership typically by mailing list subscription (no dues)
• monthly presentations/meetings



Getting Help with man & info

It may seem cryptic, but at least it's well-documented
• man [section] name

man sections
useful options

• info
created by the GNU project
meant as a "superior" replacement for man
uses HTML like navigation with links
if info pages exist, they usually provide better
documentation than the corresponding man page
use pinfo to view pages



Lab 2
Estimated Time:
R6: 25 minutes
U1004: 25 minutes
S11: 25 minutes



Chapter

3
THE LINUX
FILESYSTEM



Filesystem Support

Support for dozens of filesystem types including:
• Minix, ext2, MS-DOS, UMSDOS, VFAT, NTFS, NFS, ISO9660,
HPFS, SYSV, SMB, AFFS, BeFS, BFS, EFS, NWFS, QNX, RFS,
UDF, UFS, ReiserFS, Btrfs

Support for advanced logging / journaling filesystems:
• ReiserFS, ext3, ext4, JFS, XFS, Reiser4, Btrfs
• Current default standard for Linux: ext4



Unix/Linux Filesystem Features

Standard Unix filesystem characteristics
• singly rooted
• cAsE SensiTiviTY
• long file names
• supports links
• timestamps various file operations

ctime, atime, mtime



Filesystem Hierarchy Standard

Filesystem standard – FHS
• Guiding principles for each area of filesystem
• Predictable location of files and directories

Provides uniformity across multiple Linux distributions
The Linux Standards Base
• Aims to allow Linux binaries to run unmodified on multiple Linux
distributions

• Specifies system and library interfaces and environment
• Incorporates the FHS



Navigating the Filesystem

Changing and displaying directories
• cd, pwd

Absolute vs. relative addressing
Special cases
• cd (without parameters)
• cd ~username
• cd ~
• cd -
• . and ..



Displaying Directory Contents

ls List directory contents
• -a show all files (including .hidden files)
• -l long listings
• -d show directories not contents
• -h human readable file sizes
• -R recursively list sub-directories
• -S sort file list by size



Filesystem Structures

Data Blocks
• The file's data.

inode Tables
• Data about the file's data.



Determining Disk Usage With df and du

df Report disk space usage per filesystem
• -h human readable output
• -i list inode information instead of block usage
• -T include filesystem type
• -H|--si use powers of 1000 instead of 1024

du Report disk usage per file and directory
• -h human readable sizes
• -s summarize, only display total for each argument
• -x do not include files on a different filesystem
• --si use powers of 1000 instead of 1024



Determining Disk Usage With baobab

Disk Usage Analyzer (baobab)



Disk Usage with Quotas

quota list user quotas for logged on user
• quota -g group – List group quotas
• quota -u user – List quotas of specified user

only available to the superuser
Returns quota information for filesystems listed in the /etc/fstab
• queries the aquota.user and aquota.group databases on local
filesystems

• queries the rquotad daemon for NFS-mounted filesystem



File Ownership

Each file is owned by a specific UID and GID
chown – Change the user (UID) ownership
• Only root can change ownership to another user
• Can also be used to change group at the same time

chgrp – Modify just the group (GID) ownership



Default Group Ownership

Newly created files will usually be given GID ownership based on the
current active group of the person who creates the file

newgrp newgroup - log in to a new group
• newly created files will be owned by the new group
• users can only change to their own groups
• root user can change to any group
• exit to switch back



File and Directory Permissions

ls -l List file permissions
• first character represents type of file (d,-,l,b,c,s,p)

Then permission sets for:
• user -UID that owns the file (sometimes called owner)
• group -GID that owns the file
• everyone else (sometimes called other)

Permissions can be represented in two ways
• symbolic representation (e.g. rwxr-xr-x)
• numeric representation (e.g. 0755)



File Creation Permissions with umask

Default permissions for newly created filesystem objects
• files: 666
• directories: 777

umask
• defines what permissions to withhold from the default
permissions

• used to display or change your umask
• usually set in the user or system shell dot files
• used to provide the user private group (UPG) scheme



Changing File Permissions

chmod Modify file permissions
• -R recursively modify permissions
• supports both numeric and symbolic notation
• special permissions
• set UID (SUID)
• set GID (SGID)
• sticky

Special permissions cause different behavior for files and directories



SUID and SGID on files

The SUID bit changes the security context of an executable
An executable is normally run with the security context of the user
who invoked it

An executable with the SUID bit set runs with the security context of
the user who owns it, regardless of the executing user



SGID and Sticky Bit on Directories

SGID
• Files or sub-directories created within that directory inherit the
group ownership of the SGID directory

• Often used to facilitate collaboration among users who need to
share files

Sticky bit
• Normally in a directory that is world writable, users can delete
each other's files. Setting the sticky bit overrides this behavior



User Private Group Scheme

UPG provides a convenient way to share files when working in a
group project directory

UPG scheme implemented by:

1. placing each user in their own private group
2. setting the umask to 0002
3. setting the group ownership of the project directory to a
commonly shared GID

4. setting the project directory SGID

Enabling UPG on SUSE systems
• set file-creation mask to 002
• create a wrapper shell script that creates/uses private groups



Lab 3
Estimated Time:
R6: 30 minutes
U1004: 30 minutes
S11: 30 minutes



Chapter

4
MANIPULATING
FILES



Directory Manipulation

Standard manipulation commands
• mkdir – creates directories

-m: set permissions on new directory
-p: Create parent directories if they don't exist

• rmdir – deletes empty directories
-p: Remove empty parent directories



File Manipulation

Standard manipulation commands
• cp – copies files and directories

-a: Archive recursively, preserving permissions,
ownership, links and not following symbolic links, etc.
-r: copy directories recursively

• mv – moves or renames files and directories
-u: Overwrite only if destination is older than source

• Shared options
-f: replace file without prompting (see -i)
-i: prompt before replacing a file



Deleting and Creating Files

rm – removes (deletes) files and directories
• -i: prompt before removing
• -f: do not prompt before removing
• -r|-R: remove directories recursively (including contents)

touch – creates empty files or updates mtime and atime on existing
files
• -a: Set only atime to the current time
• -m: Set only mtime to the current time
• -t: Set both atime and mtime to a specified time



Physical Unix File Structure

Block and inode based
• blocks hold data
• inodes hold metadata

Superblock contains filesystem parameters
• How many inodes, etc



Filesystem Links

Created with ln
Hard links – directory entry that references the same inode as another
directory entry
• can't span filesystems
• can't create hard links to non-existent file
• can't create hard links to directories
• do not require additional storage space (i.e. blocks)

Symbolic links – file that references another file via path and name
• can reference directories
• can span filesystems
• can reference non-existent files
• occupy space



File Extensions and Content

File extensions have no special meaning to the kernel
• file extensions are just part of the file name
• the kernel only distinguishes between executable and
non-executable (data) files

• some applications may care about extensions or otherwise use
them for user convenience features
Apache, file managers like Midnight Commander,
OpenOffice.org/KOffice

The file command reports the type of file by examining the file
contents



Displaying Files

cat – displays entire file(s)
more – displays file(s) one screen at a time
less – more sophisticated and configurable pager



Previewing Files

head – displays first 10 (by default) lines of file
tail – displays last 10 (by default) lines of file
• tail -f to watch a file be appended to

Use the -n option to configure how many lines to view



Displaying Binary Files

Displaying raw binary data may corrupt the display terminal
• reset corrects terminal
• Ó¿jresetÓ¿j (if carriage-return fails)

strings – displays ASCII text inside binary files
xxd – displays HEX and ASCII dump of file



Searching the Filesystem

find – searches a directory structure for requested files
• First argument(s) are path(s) to start search from; default is
current directory

• Next arguments specify criteria to search on: file name, size,
permissions, type, owner, group, atime, mtime, ctime

• Last argument specifies action to perform.
-print is the default action and displays matches
-ls displays full details on matches
-exec allows a command to be run against each
matching file. The -ok can be used when a confirmation
prompt is desired



Alternate Search Method

locate – High-speed and low-impact searching
• Searches index instead of actual filesystem
• Index updated each night by default

locate won't know about recently added/deleted files
until database is rebuilt

• Search criteria limited to pattern matching in the pathname and
filename



Producing File Statistics

wc – Counts lines, words, characters and bytes in text files
• when given multiple files as arguments, produces totals for each
file as well as an overall total

• can be told to only output total for lines, words, characters, or
bytes

• most common usage is to count lines



Lab 4
Estimated Time:
R6: 30 minutes
U1004: 30 minutes
S11: 30 minutes



Chapter

5
SHELL BASICS



Role of Command Shell

Shell provides user-interface
• access to filesystem
• scriptability for task automation
• program launching
• process control interface



Communication Channels

All running programs in Unix have at least three communication
channels
• STDIN (standard in): where the program gets input. This is
usually the keyboard.

• STDOUT (standard out): where the program sends output. This is
usually the terminal.

• STDERR (standard error): where the program sends error
messages. This is usually the terminal.



File Redirection

File or I/O redirection allows you to redirect STDIN, STDOUT, and STDERR
to files

Requires special notation on the command line
• redirect standard input with <

$ sort < /etc/passwd
• redirect standard output with >

$ echo 100000 > /proc/sys/fs/file-max
• redirect standard error with 2>

$ ls -alR /proc/ 2> /dev/null
• redirect both STDOUT and STDERR to the same file:

$ ls -R /proc/ > output 2>&1
$ ls -R /proc/ &> output



Piping Commands Together

Piping allows the STDOUT from one program (on the left of the pipe) to
become the STDIN of another (on the right of the pipe)
• The pipe symbol, |
• simple example:

$ ls -al | less
• more complex example:

$ cut -d: -f6 /etc/passwd | sort | uniq -c | sort -rn
Redirection and piping can be combined:
• Usually used for feeding STDERR into the pipeline along with
STDOUT

# ls /proc/ 2>&1 | grep kernel



Filename Matching

Many commands take a list of filenames as arguments tedious to
manually type many filenames

Wildcard patterns provide an easy way to supply many filenames as
arguments

Historically called "file globbing"
Wildcard patterns are specified with special characters



File Globbing and Wildcard Patterns

A wildcard pattern is a string that contains one of the characters:
• ? – matches any single character
• * – matches anything (any number of characters)
• [...] – character classes

the - character denotes a range
examples: [abcd2345] [a-d2-5] [a-gA-Z0-5]



Brace Expansion

Allows generation of arbitrary strings
Similar to wildcards, but target files or directories don't need to exist
• Can have optional preamble and/or postamble

{m,n,o,on} expands to: m, n, o and on
d{m,n,o,on}t expands to: dmt, dnt, dot & dont, where d
is the preamble and t is the postamble

• Can be combined with wildcards; brace expansion occurs
before globbing



Shell and Environment Variables

Useful in shell scripting
Programs may malfunction if not set ($PATH, $HOME, $USER, etc.)
Viewing variables
• set (shell)
• env (environment)

Clearing variables
• unset (shell|environment)
• env -u|i command (environment)



Key Environment Variables

$PATH – Executable search path
$PWD – Path to current working directory
$TERM – Login terminal type (e.g. vt100, xterm)
$SHELL – Path to login shell (e.g. /bin/sh)
$HOME – Path to home directory (e.g. /home/joe)
$USER – Username of user
$DISPLAY – X display name (e.g. station2:0.0)
$EDITOR – Name of default editor (e.g. ex)
$VISUAL – Name of visual editor (e.g. vi)



General Quoting Rules

Metacharacters
Backslash
Double Quotes
Single Quotes



Nesting Commands

Command Substitution
• Substitutes output of command in place of "embedded" command

Nesting Commands
• `command`
• $(command)

Evaluating Command Output
• eval command



Multiple and Multi-line Commands

Entering multiple commands on one command line
• Separate commands with a semi-colon ;

Entering multi-line commands
• Special use of the backslash (\) to do line-wrapping
• This is sometimes called line wrapping or continuation



Lab 5
Estimated Time:
R6: 45 minutes
U1004: 45 minutes
S11: 45 minutes



Chapter

6
ARCHIVING AND
COMPRESSION



Archives with tar

tar/star
• manipulates .tar files, also called tarballs
• used for backup and transfer of files
• creates, extracts or lists the contents of tarballs

.tar (tarball)
• records file and directory structure
• includes metadata about the file: date, timestamps, ownership,
permissions, etc.

Compression/Decompression options
• compress, gzip, bzip2, lzma/xz



Archives with cpio

Features of cpio archives include:
• manipulates .cpio files
• used as the basis for RPM packages
• doesn't recurse sub-directories, must be passed list of dirs
• more robust than tar when media errors encountered
• -i → input mode, used when feeding a cpio archive into the
cpio command

• -o → output mode, used to create cpio archives, which are sent
to STDOUT



The gzip Compression Utility

gzip – popular replacement for compress
• created by the GNU project because of patented algorithms in
compress

• default action deletes original after creating new compressed file
• standard file extension: .gz
• much higher compression ratio than compress

gunzip or zcat decompresses files compressed with gzip
• gunzip decompresses the file on disk (removing the original,
compressed file); zcat does not

• zcat outputs uncompressed data to STDOUT



The bzip2 Compression Utility

bzip2
• typically better compression than the gzip command
• default action deletes original after creating new compressed file
• standard file extension: .bz2

bunzip2 or bzcat decompresses files compressed with bzip2
• bunzip2 decompresses the file on disk (removing the original,
compressed file); bzcat does not

• bzcat outputs uncompressed data to STDOUT



The XZ Compression Utility

xz Latest and greatest compression
• better compression than the bzip2 command
• default action removes original file after creating new
compressed file

• standard file extension: .xz
• legacy file extension: .lzma

Use --format=lzma for LZMA support
xz -d (unxz) or xz -dc (xzcat) decompresses files compressed with xz
• xz -d decompresses the file to disk (removing the original,
compressed file); xz -dc does not

• xz -dc prints uncompressed data to STDOUT
Replaces gzip and bzip2 as compression format of choice



The PKZIP Archiving/Compression format

zip – Compatible with PKZIP files
• default action does NOT delete original file(s) after creating new
compressed archive

• standard file extension: .zip
unzip expands a .zip file



Lab 6
Estimated Time:
R6: 15 minutes
U1004: 15 minutes
S11: 15 minutes



Chapter

7
TEXT PROCESSING



Searching Inside Files

grep – searches for patterns within files
• -A NUM print match and NUM lines after match
• -B NUM print match and preceding NUM lines
• -C NUM print match and NUM lines before and after
• -E use extended regular expressions
• -i perform case insensitive match
• -l print name of file(s) containing a matching line
• -n show line numbers
• -v invert match; prints what doesn't match
• --color highlight matched string(s) in color



The Streaming Editor

sed – A [s]treaming [ed]itor
• performs edits on a stream of text (usually the output of another
program)

• often used to automate edits on many files quickly
• small and very efficient
• -i option for in place edits with modern versions



Text Processing with awk

awk – pattern scanning and processing language
• Turing complete programming language
• splits lines into fields (like cut)
• regex pattern matching (like grep)
• math operations, control statements, variables, IO...



Replacing Text Characters

tr – translates, squeezes & deletes characters
• translates one set of characters into another

commonly used to convert lower case into upper case
tr a-z A-Z

• squeeze collapses duplicate characters
commonly used to merge multiple blank lines into one
tr -s '\n'

• deletes a set of characters
commonly used to delete special characters
tr -d '\000'



Text Sorting

sort – Sorts text
• can sort on different columns
• by default sorts in lexicographical order

1, 2, 234, 265, 29, 3, 4, 5
• can be told to sort numerically (by using the -n option)

1, 2, 3, 4, 5, 29, 234, 265
• can merge and sort multiple files simultaneously
• can sort in reverse order
• often used to prepare input for the uniq command



Duplicate Removal Utility

uniq – Removes duplicate adjacent lines from sorted text
• cleanly combines lists of overlapping but not identical
information

• -c prefixes each line of output with a number indicating number
of occurrences

• taking this output and performing a reverse sort produces a
sorted list based on number of occurrences



Extracting Columns of Text

cut – Extracts selected fields from a line of text
• can specify which fields you want to extract
• uses tabs as default delimiter
• -d option to specify a different delimiter
• most useful on structured input (text with columns)



Combining Files and Merging Text

cat – Concatenate files
paste – Merges text from multiple files
• -s option to merge files serially
• uses tabs as default delimiter



Comparing File Changes

The cmp command
• -s

The diff command
• -c
• -u

The patch command
• -p#



Lab 7
Estimated Time:
R6: 10 minutes
U1004: 10 minutes
S11: 10 minutes



Chapter

8
REGULAR
EXPRESSIONS



Regular Expression Overview

Regular Expressions (REs) provide a mechanism to select specific
strings from one or more lines of text
• Rich and expressive language
• Used by many commands and programming languages:

grep, awk, sed, Emacs, vi, less, Expect, lex, Perl,
Python, Tcl, Delphi, and Microsoft Visual C++



Regular Expressions

The building blocks of regular expressions are expressions that match
a single character
• most characters, letters and numbers match themselves
• special characters are matchable as well
• "." (the period) matches any single character
• specify where the match must occur with anchors



RE Character Classes

Character classes, [...], match any single character in the list
• RE [0123456789] matches any single digit

Some predefined character classes
• [:alnum:] [:alpha:] [:cntrl:] [:digit:]
• [:lower:] [:punct:] [:space:] [:upper:]

The - character denotes a range
RE [[:alnum:]] equivalent to [0-9A-Za-z]
• Matches any single letter or number character



RE Quantifiers

RE quantifiers, control the number of times a preceding RE is allowed
to match
• * → match 0 or more times
• + → match 1 or more times
• ? → match 0 or 1 times
• {n} → match exactly n times
• {n,} → match at least n times
• {n,m} → match at least n but not more than m times



RE Parenthesis

Parenthesis
• (RE) → creating a new atom
• (RE)\non-zero digit → storing values
• (RE1|RE2) → alternation: RE1 or RE2



Lab 8
Estimated Time:
R6: 35 minutes
U1004: 35 minutes
S11: 35 minutes



Chapter

9
TEXT EDITING



Text Editing

Unix Revolves Around Text
• Text is robust
• Text is universally understood
• The only tool / program required is a text editor
• Remote administration possible over low-bandwidth connections

Text Editors
• Many editors available, each with fanatical followings
• Pico/Nano, vi and Emacs are the most common
• $EDITOR and $VISUAL control default editor



Pico/GNU Nano

Pico
• Originally built into Pine
• Developed at the University of Washington (UW)

GNU Nano
• A free replacement for Pico
• Emulates Pico functionality as closely as possible

Advantages
• Simplicity in editing as primary goal
• Standard features like cut and paste; spell checking

Disadvantages
• Not as powerful as many other editors



Pico/Nano Interface

Main Areas of Pico/Nano
• Top Line
• Editor Window
• Status Line
• Common Shortcuts

Line Wrapping
• Happens automatically
• Can be avoided with -w



Pico/Nano Shortcuts

Common Shortcuts
• ˆX – eXit (quit), or close the current buffer
• ˆO – write Out (save) the current file
• ˆG – Get (display) the help screen
• ˆW – Where is (search for) a string
• ˆ\ – search and replace (Nano only)

Cutting and Pasting
• ˆK – cut a line
• ˆU – Uncut (paste) cut line(s)



vi and Vim

vi – The Visual Editor
• Developed originally by Bill Joy for BSD UNIX
• Officially included in AT&T UNIX System V
• Available on all UNIX platforms

Vim – Vi IMproved
• Has significantly enhanced functionality
• Includes a compatibility mode



Learning vi

Getting help
• Friends & Co-workers
• Books & Cheat Sheets
• :help – Vim has extensive online help
• http://www.vim.org/



Basic vi

vi is Modal
• Insert Mode: keystrokes are inserted into the document
• Command Mode: keystrokes are interpreted as commands

Basic Cursor Movement Commands
• h j k l

Basic Editing Commands
• i a Ã x dd

Saving & Exiting
• :w
• :q
• :wq
• :wq!



Intermediate vi

Repeating Actions
Undoing Changes
Insert & Substitute
Search & Replace
Delete, Yank, & Put
More Movement Commands



Emacs

Two main versions available:
• GNU Emacs
• XEmacs

Evolved from the esoteric TECO editor macros
Highly extensible



The Emacs Interface

Main areas of Emacs
• Frame
• Window
• Menu Bar
• Mode Line
• Echo Area



Basic Emacs

Starting Emacs
Major Modes
Movement Commands
Editing Text
Saving & Exiting



More Emacs Commands

Searching For Text
Copying, Cutting & Pasting
Undoing Changes
More Movement Commands



Lab 9
Estimated Time:
R6: 90 minutes
U1004: 90 minutes
S11: 90 minutes



Chapter

10
COMMAND
SHELLS



Shells

Bourne Shell (sh)
C Shell (csh)
Korn Shell (ksh)
Bourne-Again Shell (bash)
Enhanced C Shell (tcsh)
Public Domain Korn Shell (pdksh)
Z Shell (zsh)



Identifying the Shell

Default login shell name is stored in the $SHELL environment variable
Identifying the login shell:

$ echo $SHELL
Identifying the current shell:

$ ps -f



Changing the Shell

Use the shell name to invoke that shell (i.e. type tcsh)
Changing login shell permanently
• Edit the /etc/passwd entry for that user
• chsh – (change shell) available to normal users

/etc/shells contains list of allowed shells



Bourne sh: Configuration Files

/etc/profile – system wide
• /etc/profile.d/

~/.profile – per user



Script Execution

Spawn a new shell and run script_name in it:
• ./script_name

Run script_name in the current shell:
• source script_name
• . script_name



Bourne sh: Prompts

Simple. No bells or whistles like tcsh or bash
Prompt is set using the PS1 variable

$ PS1="$(hostname) $ "
homer $ export PS1



bash: Bourne-Again Shell

Completely backwards compatible with Bourne shell
Adds several enhancements – many from csh / tcsh
• command-line history and completion
• aliases
• sophisticated prompt configuration
• both Emacs and vi style command line editing
• tilde (~) as an alias for home directories



bash: Configuration Files

To remain compatible with the Bourne shell
• ~/.profile and /etc/profile

Also parses ~/.bash_profile, ~/.bash_login, and ~/.bashrc, if they
exist
• ~/.bash_login only processed once, at login

If ~/.bash_logout exists, it will be run on logout.
Login shell options
• --login
• --noprofile

Subshell options
• --rcfile foofile
• --norc



bash: Command Line History

View most recent commands entered
$ history

Execute previous command
$ !!

Last command starting with xy
$ !xy

Run command found on specified history line number:
$ !42

Special Control sequences can search historyÓ¿r – see man bash
for details
Fix Command may be used for advanced searching and editing:

$ fc -1 -5



bash: Command Editing

Bash shell offers vi-mode and Emacs-mode command editing
• to set vi editing mode

 $ set -o vi
• to set emacs editing mode (default)

 $ set -o emacs
Key bindings for vi-mode and emacs-mode can be easily viewed and
modified
• System key bindings set in /etc/inputrc
• User key bindings set in ~/.inputrc
• The Bash built-in command bind can be used to list and modify
key bindings



bash: Command Completion

Procedure depends on editing mode in use
• Ð for simple completion in emacs mode
• \ (from control mode) for simple completion in vi mode

More advanced completion than csh or ksh
• supports: command, file / directory name, username,
• hostname, and variable name completion.
• attempts to "do the right thing" based on context
• highly customizable



bash: "shortcuts"

Directory navigation
• Use of ~
• Use of -
• The pushd, popd and dirs commands

Command shortcuts are called aliases
• Created with the alias command
• Can be removed with the unalias command
• Are not persistent across sessions, but can be added to the
~/.bashrc file

Clearing the screen



bash: prompt

Much more rich prompt capabilities than Bourne shell
• uses backslash-escaped character sequences

   $ PS1="\u@\h \! $ "
   joe@homer 56 $ export PS1
   joe@homer 57 $



Lab 10
Estimated Time:
R6: 25 minutes
U1004: 25 minutes
S11: 25 minutes



Chapter

11
INTRODUCTION
TO SHELL
SCRIPTING



Shell Script Strengths and Weaknesses

Shell Script Strengths
• Repetitive and Error-Prone Tasks
• Wrapping or Customizing Larger Applications
• Portability to Many Unix Platforms
• Text Files and String Data

Shell Script Weaknesses
• Large Applications
• Numeric and Speed Sensitive Computations
• Tasks Requiring Elevated Privileges



Example Shell Script

Create a directory and a simple home page in a user's home directory
#!/bin/bash
USER="$1"
HOMEDIR=$(getent passwd "$USER" | cut -d: -f6)
PUBDIR="${HOMEDIR}/public_html"
mkdir "$PUBDIR"
echo "<html><h1>Hello World</h1></html>" \
  > "${PUBDIR}/index.html"
chown -R "${USER}:" "$PUBDIR"

Run the script
$ ./mkwebpage.sh joe



Positional Parameters

Command line arguments in $0, $1, $2, . . .
• $0 is name of shell script (e.g. myscript.sh)
• $1 is first argument, $2 is second, and so forth

Number of arguments in $#
List of all parameters in $@
Special shell variables



Input & Output

echo – prints text to standard out
• echo "Your time is up"
• can use redirection to write to files or pipes

echo "Your time is up" > time.txt
• the -e option causes echo to honor escape sequences for
special characters

• the -n option removes the normal newline character from the
end of the output

read – reads text from standard input
• echo -n "What is your name? "
• read NAME



Doing Math

Simple expressions can be evaluated by the shell
$ foo=$((12*34))
$ echo $((56+$foo))
464

Use the expr program within scripts for math
• AVG=$(expr \( $X1 + $X2 \) / 2)
• expr only does integer math

Use perl, awk or bc for more advanced math
$ pi=$(echo "scale=20; 4*a(1)" | bc -l)



Comparisons with test

Checks file types and compares values
Often used in conditional constructs



Exit Status

Communicates whether a program successfully completed
• 0 means a program or command was successful
• 1 - 255 means a program failed somehow

$? reports the exit status
A script can use exit to report a specific exit status
• exit
• exit 1
• echo $?

The shell's logical AND (&&) and OR (||) operators also use return
codes:
[ $X -eq 5 ] && echo "Got to 5" || echo "Not at 5, yet"



Conditional Statements

if — then
• if — then — fi
• if — then — else — fi
• if — then — elif — else — fi



Flow Control: case
case
• SysV init scripts
• getopts



The for Loop

Different construct than in C/C++, Perl, etc.
Iterates through a list (not necessarily numeric)
• list can be result of wildcard expansion
• do & done encapsulate iteration



The while and until Loops

Commonly uses test or [ command to test a condition
Like a for loop, uses do & done to encapsulate iteration
Use break to exit out of nested loops.



Lab 11
Estimated Time:
R6: 20 minutes
U1004: 20 minutes
S11: 20 minutes



Chapter

12
PROCESS
MANAGEMENT
AND JOB
CONTROL



What is a Process?

A process is a launched program
Associated with a process:
• process ID (PID)
• priority
• nice value
• memory
• security context
• environment
• file handles
• exit status



Process Lifecycle

Processes are organized in a hierarchy
• init – first process spawned by kernel with PID of 1

the only process directly launched by the kernel
init will spawn child processes

• child processes spawn other children, etc.
Processes can be created by two methods
• fork() – create child duplicate of self
• exec() – spawn completely new process that replaces parent
• fork() + exec() – method for launching different process

Process termination methods
• Normal termination via exit()
• Abnormal termination via abort() or uncaught signal



Process States

Processes can transition between states upon receipt of signals
running ⇒ currently being allocated CPU slices
stopped ⇒ still loaded in memory, but not running
sleeping ⇒ waiting for some event (ex. user input)
un-interruptible sleep ⇒ as the name suggests; usually caused
when waiting for I/O

zombie ⇒ a terminated process whose resources have all been
freed except for a PID and exit status



Viewing Processes

ps – standard command to view process info
• supports many options to modify output
• can emulate behavior of other Unix variants ps
• reads information from the /proc/ filesystem

top – similar to ps, but interactive
• refreshes display every 3 seconds by default
• can sort processes by various criteria such as CPU usage,
memory, UID, etc.

• can send signals to processes
gnome-system-monitor – limited GUI top-like program
KDE System Guard (ksysguard) – GUI with extensive local & remote
monitoring capabilities



Signals

Special message that can be sent to a process
Processes can install signal handlers that catch signals and trigger
some action

Signals can have different meanings on different architectures
Some signals cannot be caught or ignored and are processed by the
kernel (ex. SIGKILL (9))



Tools to Send Signals

kill – Send arbitrary signals to process by PID
• sends a SIGTERM (15) by default
• -l lists all signals supported on the machine

killall – Send signal to process by name
pkill – Send signal to process by terminal, group, username, PID, or
command name
top, gnome-system-monitor, ksysguard can also send signals
Certain key bindings send signals
• Ó¿c = SIGINT (2)
• Ó¿z = SIGSTOP (19)



Job Control Overview

Job control gives you the ability to do multitasking at the command
line

Job control refers to the ability to selectively stop (suspend) the
execution of processes and continue (resume) their execution at a
later point

These functions are exposed to the user via the shell
• Older or minimalist shells may not support job control



Job Control Commands

Start a process as a background process by running program &
Stop an already running process by sending it a SIGSTOP (19), (ex.
pressingÓ¿z)
• fg – run the job in the foreground
• bg – run the job in the background
• kill – terminate the job

Refer to jobs using %n, where n is the job number
The jobs command will list all jobs present on the shell but can not
list jobs for other shells



Persistent Shell Sessions with Screen

Terminal Multiplexer (window manager)
Allows for very efficient multitasking from a virtual terminal
Sessions can be disconnected and reconnected at will
Useful for remote administration



Using screen

Starting screen
Commands
Detaching and re-attaching to sessions
Session basics



Advanced Screen

Session locking
Split-screen
Monitoring sessions
Sharing screen sessions
Default settings
• System-wide: /etc/screenrc
• Per user: ~/.screenrc



Lab 12
Estimated Time:
R6: 45 minutes
U1004: 45 minutes
S11: 45 minutes



Chapter

13
MANAGING
SOFTWARE



Downloading with FTP

Most ubiquitous file transfer method is FTP
• supported by almost all platforms
• many ftp client and server programs available for Linux
• supports anonymous file transfers
• authenticates in clear text

HTTP is supplanting FTP in many cases
• provides for a more user-friendly interface
• very widespread support



FTP

Standard FTP clients have text-based interfaces
FTP servers typically listen on TCP port 21 and send data to clients on
TCP port 20

To connect specify name or IP address of the server
• If at the shell prompt:

$ ftp ftp.freesoftware.com
• If already at the ftp> prompt ...

ftp> open ftp.freesoftware.com
The server will then prompt for username and password
• When doing an anonymous login, the username ftp can often be
used instead



lftp

An excellent replacement for the standard ftp client
Supports a wealth of useful features including
• progress meters
• filename completion
• command history
• background processing
• auto-resume downloads
• bookmarking
• host redialing
• working with firewalls and proxies
• downloading entire directory trees



Command Line Internet – Non-interactive

wget – Non-interactive file retrieval
• supports HTTP(s) and FTP
• auto-resume of downloads, and recursive downloads

curl – Non-interactive file transmitter
• supports HTTP(S), FTP(S), SCP, SFTP, TFTP, etc.
• SSL certificates and Authentication (Basic, Kerberos and more)
• uploading and downloading with auto-resume
• proxies, cookies, proxy tunneling

Both are great for scripts/automation



Command Line Internet – Interactive

lynx – console browser
• Basic browser

w3m – enhanced console browser
• Supports tables and frames
• Acts as pager so it can be used as a replacement to more or
less

elinks – modern console browser
• supports javascript, tables, frames, cookies
• menu interface, download manager, full color support
• begins rendering page while still downloading
• links is symlink to elinks



Managing Software Dependencies

Software Management Problems
• Large dependency trees are difficult to manage
• Many applications have many dependencies

Package Management Solutions
• Uses a central repository of packages
• Inter-dependencies are automatically calculated/managed

Bundled with Red Hat Enterprise Linux
• Provided by the yum command

Bundled with SUSE Linux Enterprise Server
• Provided by the zypper command

Bundled with Ubuntu
• Provided by APT



Using the YUM command

YUM Package (un)installation:
• install/localinstall
• update
• remove

YUM Package Querying
• info
• list
• search
• whatprovides

YUM Maintenance
• clean



YUM package groups

YUM package group commands:
• yum groupinstall
• yum groupupdate
• yum groupinfo
• yum grouplist
• yum groupremove



Configuring YUM

YUM configuration
• Main configuration

/etc/yum.conf
• YUM repositories

/etc/yum.repos.d/*.repo
• yum-config-manager



Popular Yum Repositories

Highly regarded 3rd party repositories
• EPEL repository — Over 11,000 add-on packages
• Dag Wieers / RPMforge repository — Over 4,800 add-on
packages

• atrpms repository — Over 2,500 add-on packages
• Jpackage repository — Over 1,200 add-on packages
• RPM Fusion — Over 800 add-on packages

WARNING! Software installed from 3rd party repositories isn't
supported by distribution vendor

Yum configuration and GPG keys typically provided in an RPM. For
example:
• rpm -Uvh rpmforge-release-0.3.6-1.el5.rf.i386.rpm



Using the Zypper command

Zypper commands:
• install (in)
• update (up)
• info (if)
• search (se)
• remove (rm)

Common Options
• -y
• -D

Dealing with related groups of packages
• -t pattern [pattern]



Zypper Services and Catalogs

Zypper Service and Repository Tools
• zypper addservice (as)/addrepo (ar)
• zypper removeservice (rs)/removerepo (rr)
• zypper modifyservice (ms)/modifyrepo (mr)
• zypper renamerepos (nr)
• zypper services (ls)/repos (lr)
• zypper refresh-services (refs)/refresh (ref)
• zypper clean (cc)

SUSE Update Service
• suse_register



The dselect & APT Frontends to dpkg

APT
• apt-get → automates downloading and installing packages and
their dependencies

 # apt-get install package_name
• apt-cache → search configured archives and display information
for packages

# apt-cache {info,search} package_name
dselect → ncurses interface



Aptitude

The aptitude utility offers both command line and ncurses interfaces
• Alternative to the old dselect command and most APT tools
• Searches are limited to package names; use apt-cache for
better searching support

• Automatically installed packages can be automatically
uninstalled



Configuring APT

APT configuration
• Main configuration

/etc/apt/apt.conf
/etc/apt/apt.conf.d/*

• APT archives
/etc/apt/sources.list
/etc/apt/sources.list.d/*.list

Keeping a Debian-based System Current



Lab 13
Estimated Time:
R6: 30 minutes
U1004: 15 minutes
S11: 30 minutes



Chapter

14
MESSAGING



System Messaging Commands

write
• Useful for sending short (1-2 line) instant messages to other
users on the system

• Effective in a pipeline
wall
• Similar to write, but sends message to all users on the system
• Effective in a pipeline

talk
• Real-time keystroke at a time chat
• Works between Internet hosts as well



Controlling System Messaging

Terminal Devices
• Owned by special system group tty
• Have default group write permissions

The mesg Utility
• Toggles the terminal device's group write permission.
• Use mesg followed by y or n to toggle
• Use mesg with no arguments to see current status
• write, wall and talk commands honor current mesg status.



Internet Relay Chat

Internet Relay Chat (IRC)
• Clients can chat or join channels and transfer files

Direct Client-to-Client (DCC) connections possible
Channels can have operators and other properties
• Multiple linked IRC servers form an "IRC network"

IRC networks: Freenode, EFNET, DALNET, UnderNET
The largest networks typically having 60,000+ concurrent
clients in over 20,000+ channels each

Shell variables commonly honored by IRC clients
• $IRCNAME: set name as displayed by /whois
• $IRCNICK: set default IRC nick
• $IRCSERVER: set default IRC service



Instant Messenger Clients

Instant messaging clients allow chatting, file transfers, and other
communication.

Allow creation of "buddy" lists for notification.
Many different IM networks exist: ICQ, AIM, Yahoo, MSN,
Jabber/XMPP, and others.

Many powerful graphical IM clients exist for Linux
• Often clients can simultaneously work with multiple networks
• pidgin is the most popular GNOME client
• Kopete is a multi-protocol IM client included with KDE



Electronic Mail

Sendmail, Postfix, and Exim: popular email servers / Mail Transport
Agent (MTA)

Command-line email clients / Mail User Agents (MUA)
• mail – original, very simple client
• pine – sophisticated, menu-driven client
• other command-line clients include:

elm
mutt

GUI email clients
• Mozilla Thunderbird – Email client from Mozilla
• Evolution – Powerful GNOME Outlook clone
• Kmail – Standard KDE mail client



Sending Email with sendmail

Sending Email with sendmail
• sendmail -t



Sending and Receiving Email with mail

mail, Mail, and mailx
• Can be used interactively to send and read email from the
command line

• More commonly used to mail the output of some process or file
• Can be used to read spooled mail for other accounts
• Only capable of reading local mail spool(s)
• Only capable of using local SMTP server



Sending and Receiving Email with mutt

Sending Email with Mutt
• Similar functions to mail
• Supports integrated, common MUA features

MIME encoding and decoding
Digital Signatures
IMAPS/POP3S/APOP
SMTP AUTH/STARTTLS
Keyboard macros

• Only capable of using localhost SMTP
• Can send mail interactively and non-interactively



Sending Email with Pine

PINE: A program for Internet News and Email
• Originally designed for novice users

Menu-driven
Easy to use
Supports SMTP, IMAP, POP3, MIME, etc.

To send a message:

1. Press c (Compose) from main menu
2. Fill in To:, Subject:, etc. fields
3. Enter message body
4. TypeÓ¿x (Send)
5. Press y to confirm



Evolution

Graphical information suite for Linux
• Email
• Calendar
• Contacts
• Synchronization with PDAs



Lab 14
Estimated Time:
R6: 20 minutes
U1004: 20 minutes
S11: 20 minutes



Chapter

15
PRINTING



Linux Printer Sub-systems

There are several printer sub-systems available for Linux.
The three most popular are:
• lpd
• LPRng
• CUPS



Legacy Print Systems

Unix LPD
• Originally designed for line printers

Supports network, parallel and serial printers
Configuration in /etc/printcap, based on termcap(5)
syntax

LPRng
• Next Generation lpr/lpd

LPD compatible commands and configuration
• Advanced Configuration

lpd.conf
lpd.perms



Common UNIX Printing System

A completely new printing system
• Supports both BSD and SysV printing commands

For example: lpr and lp
• Supports network, parallel, serial, and USB printers.

Many advanced features
• Web based administration
• Uses Postscript Printer Description files (.ppd)
• Automatic client setup
• Supports IPP (Internet Printing Protocol)
• Client authentication

Very easy to setup!



Defining a Printer

CUPS web interface
lpadmin
KDE Control Center (kcontrol) Peripherals → Printer tool
system-config-printer
SLES11 specific yast2 printer



Standard Print Commands

Send a job to the queue to be printed
• lpr (BSD/LSB)
• lp (SysV/POSIX/LSB)

lpq – View the contents of the queue
lprm – Remove a job from the queue
Use the -Pqueue option to specify the print queue named queue



Format Conversion Utilities

Unix applications output text or Postscript
Ghostscript
• impressive suite of utilities that can prepare output for many
non-Postscript printers

• converts between Postscript and many different file formats,
including other printer languages (e.g. PCL)

enscript – Converts text to Postscript
mpage – Formats output to print several document pages on one
printer page



Ghostscript

Can be invoked on demand by
• lpd
• LPRng
• CUPS for printing to non-Postscript printers

Ghostscript Utilities
• ps2ascii convert Postscript to ASCII
• ps2pdf convert Postscript to Portable Document Format
• ps2ps Postscript distiller makes a Postscript file simpler, and
usually faster to print

• also includes ascii2ps and pdf2ps



enscript and mpage

enscript
• Converts text or STDIN to Postscript and spools it to the printer
or a file

• Many options available to configure output
• Useful to send the output of commands to the printer

mpage
• Prints files with their text reduced in size so that several pages
appear on one sheet of paper

• Input may be text or Postscript
• Useful for saving paper



Lab 15
Estimated Time:
R6: 20 minutes
U1004: 20 minutes
S11: 20 minutes



Chapter

16
THE SECURE
SHELL (SSH)



Secure Shell

Replaces unencrypted utilities
• rlogin, rsh and telnet
• rexec
• rcp

Automates X11 authentication
Supports tunneling of other protocols such as
• POP, IMAP
• HTTP
• PPP

Supports user RSA/DSA keys for password-less logins



ssh and sshd Configuration

Secure Shell Client – ssh
• /etc/ssh/ssh_config
• ~/.ssh/config
• ~/.ssh/id_*
• ~/.ssh/known_hosts

Server daemon – sshd
• /etc/ssh/sshd_config
• /etc/ssh/ssh_host_*key*



Accessing Remote Shells

Encrypted Logins
• ssh [user@]host – remote interactive login
• ssh [user@]host command – remote non-interactive command
execution

Escape Sequences
• ~.
• ~?



Transferring Files

Encrypted File Transfers
• sftp – interactive file transfer
• scp – non-interactive file transfer



Alternative sftp Clients

Command-line sftp Interfaces
• lftp
• mc

Graphical sftp Interface
• konqueror
• nautilus



SSH Key Management

Enables password-less logins to remote machines
End users can generate key public / private key pairs.
• In RSA1 (SSH version 1), or RSA / DSA format (SSH version 2)

End user places public key on remote SSH server(s), and keeps
private key on primary workstation(s)

Private key should be encrypted with a passphrase



ssh-agent

With public keys distributed, a user logs into the remote systems by
providing the passphrase to unlock the private key

The ssh-agent is a long-running daemon that caches decrypted
private keys in memory
• ssh-add is used to add new keys to be cached
• ssh/sftp/scp will automatically use keys from ssh-agent

Started automatically upon login to any supported graphical desktop
environment



Lab 16
Estimated Time:
R6: 20 minutes
U1004: 20 minutes
S11: 20 minutes



Chapter

17
MOUNTING
FILESYSTEMS &
MANAGING
REMOVABLE
MEDIA



Filesystems Concept Review

Unix (and Linux) use a single-rooted filesystem
If you want to use additional filesystems, they must be grafted into
the root filesystem

You can mount both local and remote network-shared filesystems (ex.
NFS, SMB, etc.)

Unix systems traditionally have many filesystems:
• /, /tmp/, /home/, etc.



Mounting Filesystems

Mount filesystems with the mount command
• mount [-t type] [-o option[,option[,...]]] [device] [dir]
• searches the /etc/fstab file for missing parameters if supplied
with only device or dir

• mount without parameters to list currently mounted filesystems
Unmount filesystems not currently in use with
• umount [device|dir]



NFS

The Network Filesystem is the native Unix file-sharing method
• Developed by Sun Microsystems
• NFS servers export directories
• Client machines mount NFS exports and local applications and
users access files as if they were local

• Default settings are conservative; can be tuned for much higher
performance



SMB

SMB is the native file sharing protocol on Microsoft Windows and
many other platforms
• Developed by IBM originally
• SMB is synonymous with CIFS
• Servers share directories, printers, users and other information
• Client machines can browse shared files and printers, accessing
them just like local resources

Two Linux clients
• smbclient
• Mount smbfs or cifs network shares



Filesystem Table (/etc/fstab)

Contains information about filesystems
Which filesystems to mount and when
• Order is significant
• One filesystem per line

Options for mounting each filesystem
Used to mount filesystems at boot time (auto vs. noauto)
Requires root access unless the user or users options are used



AutoFS

Automated mounting of filesystems on demand
• un-privileged users can trigger mount
• automatically unmounts when no longer in use

Kernel driver plus userspace daemon
Direct vs. indirect map behavior



Removable Media

Must be mounted before use
Must be unmounted before removal
• when possible, the system will attempt to enforce this by
preventing removal of mounted media

• use fuser to locate processes accessing a filesystem
GNOME and KDE automount removable media devices (CDs, DVDs,
USB drives, etc.)



Lab 17
Estimated Time:
R6: 20 minutes
U1004: 20 minutes
S11: 20 minutes



Chapter

18
PRE-INSTALLATION
CONSIDERATIONS



Pre-Installation Considerations

Is the hardware compatible?
Will the system require dual booting?
• Which boot loader should be used?

LILO, NT Loader, GRUB, etc.
What partitioning or LVM scheme will be used?
• Resizing existing partitions? RAID?

What filesystem(s) will be used?
What is the expected primary role of this system?
Life Cycle Considerations: 10 years
• 7 year life cycle, plus up to 3 years extended life cycle



Hardware Compatibility

Linux should be compatible with most hardware
Potentially problematic hardware
• Extremely new hardware
• Proprietary laptop components



Multi-OS Booting

Consider OS partition and drive constraints
Consider possible sharing of partitions
• swap
• data

Consider making a backup of the master boot record (MBR)



Partition Considerations

MBR Table Structure
• Primary Partitions (max of 4)
• Extended Partition (max of 1)

generally fills rest of disk
contains Logical Partitions

• Max number of partitions limited by kernel and partitioning tools
• 32bit LBA limits max disk size to 2TB

GPT Table Structure
• 128 partitions
• No extended or logical partitions
• Critical structures duplicated and CRC checked
• 64bit LBA limits max disk size to 9.4 billion TB



Filesystem Planning

Appropriate filesystem layout depends on machine function
• Only a root filesystem (/) is absolutely required
• Typical minimum partitions: /boot/, /, and swap.

Common additional filesystems
• /var/ – This directory contains logs, mail files and other various
data

• /tmp/ – Space for temporary files
• /usr/ – Program binaries
• /home/ – Users' home directories
• /opt/ – Additional program binaries (usually third party)



Selecting a Filesystem

Linux supports several advanced journaling filesystems
• Extended Filesystem: Ext2 (no journal), Ext3, and Ext4 (Linux
default)

XFS – SGI's journaling filesystem
• Provides advanced features such as bandwidth guarantees

ReiserFS v3



Chapter

19
INSTALLING
RHEL6



Anaconda: An Overview

Installer for Red Hat Enterprise Linux
Multiple modes
• Install
• Upgrade
• Rescue

Multiple components
• Boot the system
• Load anaconda
• Configure the system
• Download packages

Documentation



Anaconda: Booting the System

Hardware issues
• IA-32 or Amd64/Intel64
• BIOS or UEFI

Boot methods
• CD/DVD
• USB
• PXE
• Hard drive



Anaconda: Common Boot Options

Kernel arguments
Anaconda options
• rescue
• text
• vnc
• askmethod
• repo= . . .
• ks= . . .



Anaconda: Loading Anaconda and Packages

DVD
Tree-based
• USB/HD
• NFS/FTP/HTTP

ISO-based
• USB/HD
• NFS



Anaconda: Storage Options

Devices
• Local disks
• Firmware RAID
• SAN and multipath devices
• iSCSI and FCoE

Formats
• Software RAID
• LVM
• LUKS



Anaconda: Troubleshooting

Logging
Anaconda updates
Hardware compatibility



FirstBoot

Requirements
• Install graphical environment
• Boot to runlevel 5

Tasks
• Subscribe to RHN
• Create a non-root user
• Configure user authentication
• Configure the system clock
• Configure kdump

Alternatives to firstBoot



A Typical Install



Lab 19
Estimated Time:
R6: 30 minutes



Chapter

20
INSTALLING
SLES11



Installation Choices

Sources for installing SUSE Linux:
• DVD-ROM
• Hard Drive
• Network

Methods of installation:
• GUI

local console
VNC

• Text
local/serial console
ssh

• AutoYaST2



DVD-ROM Install Media

SUSE Linux installable via DVDs
• First DVD-ROM bootable and contains the binary packages
• Second DVD-ROM not bootable and contains the source code

Speed depends on the speed of the DVD-ROM drive
Allows for installing packages from other disks
A boot disc can be created from the DVD



Network Installation

Often faster than DVD-ROM installation
Requires the creation of a SUSE Linux Network Installation Server
• Copy contents of all DVD-ROMs to server

Clients boot off of floppy images, CD-ROM made with the
suse-boot.iso image, SUSE Linux installation DVD-ROM 1, or PXE
server

Installation client supports 5 different protocols
• NFS
• FTP/TFTP
• HTTP
• SMB



SLP for SUSE Linux Installation

Service Location Protocol implementations
• OpenSLP

http://www.openslp.org/
• Apple Rendezvous/Bonjour

http://www.apple.com/macosx/features/bonjour/
Static SLP service registration files in /etc/slp.reg.d/
Add install=slp on the boot: prompt to have linuxrc find
installation servers via SLP



Local Hard Drive Installation

Requires that the installation tree exist on a hard drive, and partition,
attached to the system
• Can reside on FAT16/32, NTFS, ReiserFS, ext2/3, jfs, or xfs
filesystem

• Installation tree can be created from the actual DVD-ROM or
copied from loopback mounted ISO image of the DVD-ROM

• Initiating install requires at least a bootdisk floppy and modules4
floppy, SUSE Linux installation disc 1 or a suse-boot.iso
CD-ROM

Add install=hd:/<path/to/source>?device=sdaX on the boot: prompt
to have linuxrc find and use the installation media located on a
local hard drive.



The linuxrc Program

The Versatile linuxrc Program



Install Program Interface

YaST is the install program
• Offers both GUI and text-based installs
• Additionally supports serial console and SSH installs
• Text or GUI installation can be manually selected after booting
off install media

• Two components
linuxrc
YaST



Installation Diagnostics

Virtual Terminal Contents

Ó¿Ô¿Ä Installation Dialog

Ó¿Ô¿Å,Ó¿Ô¿È,
Ó¿Ô¿É,Ó¿Ô¿Ì

Shell Prompt

Ó¿Ô¿Æ Install log (from installation
program)

Ó¿Ô¿Ç System-related Messages

Ó¿Ô¿Ê X Graphical Display



Language/Keyboard Selection and EULA

Choose language to use during and after installation
Choose an appropriate keyboard
Read through and accept the License Agreement



Installation Mode

Fresh Install, Upgrade, or Repair existing system



Clock and Time Zone

Choose time zone and hardware clock details



Desktop Selection

SUSE Linux 10.0 and before uses KDE as default
SUSE Linux Enterprise Server 10 and later use GNOME as default



Server Base Scenario

Physical Machine
Virtual Machine
Xen Virtualization Host



The YaST Installer Design

Hub and spoke architecture



Disk Partitioning

Accept proposed disk layout?



Boot Loader Configuration

Set Boot Loader options



Software Package Selection

Choose general options or detailed selections



Kernel Crash Dump Configuration

Kernel Crash Dump (Kdump)



Confirmation and File Installation

Confirm to actually do the installation



Setting the Root Password

The root password and authentication configuration



Hostname and Domain Name

Hostname can be set manually, or gleaned from the DHCP server



Network Configuration

Network card configuration



SLES Services Configuration

Certifying Authority and OpenLDAP can be configured during install



Adding a User Account

Supply unprivileged user details



Release Notes

The release notes contain valuable insights into the differences
between this and the previous release



Final Installation Hub

Third and final Hub



Installation Complete and AutoYaST2 "Cloning"

Have YaST2 create an AutoYaST2 file representing the installation
that was just completed?

"Cloning" this manual installation allows you to perform AutoYaST2
based automated installs



Lab 20
Estimated Time:
S11: 45 minutes




	WHAT IS LINUX?
	Unix Origins and Design Principles
	Unix Timeline
	FSF and GNU
	GPL char 123 General Public License
	The Linux Kernel
	Linux Timeline
	Components of a Distribution
	Slackware
	SUSE Linux Products
	Debian
	Ubuntu
	Red Hat Linux Products
	Oracle Linux
	Mandriva

	LOGIN AND EXPLORATION
	Logging In
	Running Programs
	Interacting with Command Line
	The X Window System
	Starting X
	Gathering Login Session Info
	Gathering System Info
	got root?
	Switching User Contexts
	sudo
	Help from Commands and Documentation
	Getting Help with man & info

	THE LINUX FILESYSTEM
	Filesystem Support
	Unix/Linux Filesystem Features
	Filesystem Hierarchy Standard
	Navigating the Filesystem
	Displaying Directory Contents
	Filesystem Structures
	Determining Disk Usage With df and du
	Determining Disk Usage With baobab
	Disk Usage with Quotas
	File Ownership
	Default Group Ownership
	File and Directory Permissions
	File Creation Permissions with umask
	Changing File Permissions
	SUID and SGID on files
	SGID and Sticky Bit on Directories
	User Private Group Scheme

	MANIPULATING FILES
	Directory Manipulation
	File Manipulation
	Deleting and Creating Files
	Physical Unix File Structure
	Filesystem Links
	File Extensions and Content
	Displaying Files
	Previewing Files
	Displaying Binary Files
	Searching the Filesystem
	Alternate Search Method
	Producing File Statistics

	SHELL BASICS
	Role of Command Shell
	Communication Channels
	File Redirection
	Piping Commands Together
	Filename Matching
	File Globbing and Wildcard Patterns
	Brace Expansion
	Shell and Environment Variables
	Key Environment Variables
	General Quoting Rules
	Nesting Commands
	Multiple and Multi-line Commands

	ARCHIVING AND COMPRESSION
	Archives with tar
	Archives with cpio
	The gzip Compression Utility
	The bzip2 Compression Utility
	The XZ Compression Utility
	The PKZIP Archiving/Compression format

	TEXT PROCESSING
	Searching Inside Files
	The Streaming Editor
	Text Processing with awk
	Replacing Text Characters
	Text Sorting
	Duplicate Removal Utility
	Extracting Columns of Text
	Combining Files and Merging Text
	Comparing File Changes

	REGULAR EXPRESSIONS
	Regular Expression Overview
	Regular Expressions
	RE Character Classes
	RE Quantifiers
	RE Parenthesis

	TEXT EDITING
	Text Editing
	Pico/GNU Nano
	Pico/Nano Interface
	Pico/Nano Shortcuts
	vi and Vim
	Learning vi
	Basic vi
	Intermediate vi
	Emacs
	The Emacs Interface
	Basic Emacs
	More Emacs Commands

	COMMAND SHELLS
	Shells
	Identifying the Shell
	Changing the Shell
	Bourne sh: Configuration Files
	Script Execution
	Bourne sh: Prompts
	bash: Bourne-Again Shell
	bash: Configuration Files
	bash: Command Line History
	bash: Command Editing
	bash: Command Completion
	bash: "shortcuts"
	bash: prompt

	INTRODUCTION TO SHELL SCRIPTING
	Shell Script Strengths and Weaknesses
	Example Shell Script
	Positional Parameters
	Input & Output
	Doing Math
	Comparisons with test
	Exit Status
	Conditional Statements
	Flow Control: case
	The for Loop
	The while and until Loops

	PROCESS MANAGEMENT AND JOB CONTROL
	What is a Process?
	Process Lifecycle
	Process States
	Viewing Processes
	Signals
	Tools to Send Signals
	Job Control Overview
	Job Control Commands
	Persistent Shell Sessions with Screen
	Using screen
	Advanced Screen

	MANAGING SOFTWARE
	Downloading with FTP
	FTP
	lftp
	Command Line Internet char 123 Non-interactive
	Command Line Internet char 123 Interactive
	Managing Software Dependencies
	Using the YUM command
	YUM package groups
	Configuring YUM
	Popular Yum Repositories
	Using the Zypper command
	Zypper Services and Catalogs
	The dselect & APT Frontends to dpkg
	Aptitude
	Configuring APT

	MESSAGING
	System Messaging Commands
	Controlling System Messaging
	Internet Relay Chat
	Instant Messenger Clients
	Electronic Mail
	Sending Email with sendmail
	Sending and Receiving Email with mail
	Sending and Receiving Email with mutt
	Sending Email with Pine
	Evolution

	PRINTING
	Linux Printer Sub-systems
	Legacy Print Systems
	Common UNIX Printing System
	Defining a Printer
	Standard Print Commands
	Format Conversion Utilities
	Ghostscript
	enscript and mpage

	THE SECURE SHELL (SSH)
	Secure Shell
	ssh and sshd Configuration
	Accessing Remote Shells
	Transferring Files
	Alternative sftp Clients
	SSH Key Management
	ssh-agent

	MOUNTING FILESYSTEMS & MANAGING REMOVABLE MEDIA
	Filesystems Concept Review
	Mounting Filesystems
	NFS
	SMB
	Filesystem Table (/etc/fstab)
	AutoFS
	Removable Media

	PRE-INSTALLATION CONSIDERATIONS
	Pre-Installation Considerations
	Hardware Compatibility
	Multi-OS Booting
	Partition Considerations
	Filesystem Planning
	Selecting a Filesystem

	INSTALLING RHEL6
	Anaconda: An Overview
	Anaconda: Booting the System
	Anaconda: Common Boot Options
	Anaconda: Loading Anaconda and Packages
	Anaconda: Storage Options
	Anaconda: Troubleshooting
	FirstBoot
	A Typical Install

	INSTALLING SLES11
	Installation Choices
	DVD-ROM Install Media
	Network Installation
	SLP for SUSE Linux Installation
	Local Hard Drive Installation
	The linuxrc Program
	Install Program Interface
	Installation Diagnostics
	Language/Keyboard Selection and EULA
	Installation Mode
	Clock and Time Zone
	Desktop Selection
	Server Base Scenario
	The YaST Installer Design
	Disk Partitioning
	Boot Loader Configuration
	Software Package Selection
	Kernel Crash Dump Configuration
	Confirmation and File Installation
	Setting the Root Password
	Hostname and Domain Name
	Network Configuration
	SLES Services Configuration
	Adding a User Account
	Release Notes
	Final Installation Hub
	Installation Complete and AutoYaST2 "Cloning"


